Sunday, January 10, 2016

Hydrogen Bomb vs. Atomic Bomb: What's the Difference?

85
 
19
 
80
Submit
3
Reddit

Pocket-Sized Device Charges Your Phone with Water

10
 
11
 
2
Submit
0
Reddit

Saturday, January 2, 2016


Space Bots & Android Waste Collectors: What's Ahead for Robotics

5
 
8
 
80
Submit
33
Reddit
valkyrie-nasa-darpa.jpg
NASA's Valkyrie robot
Credit: NASA/DARPA
It was a good year to be a robot.
In 2015, researchers in Korea unveiled a robotic exoskeleton that users can control with their minds, a four-legged bot in China set a new world record by walking 83.28 miles (134.03 km) without stopping and 3D-printing robots in Amsterdam started work on a new steel footbridge.
But these smart machines are capable of so much more. Researchers around the world are now designing and building bots that will complete more noteworthy tasks in 2016 and beyond. From exploring other planets to fighting fires at sea, here are a few skills that bots could pick up in the new year. [Super-Intelligent Machines: 7 Robotic Futures]

Travel to Mars
Space robots already exist. Robotic arms and hands on the outside of the International Space Station (ISS) assist astronauts during spacewalks, hoist equipment and perform other duties. A humanoid robot named Robonaut 2 also helps out around the orbiting laboratory, doing simple and sometimes dangerous tasks so that human astronauts can focus on other things. And then there are the Mars rovers, Opportunity and Curiosity, which serve as rolling robotic laboratories, exploring the surface of the Red Planet, collecting samples and relaying data back to Earth.
But NASA has plans to send a different kind of robot to Mars in the not-so-distant future. The space agency's Valkyrie robot, or R5, is an updated Robonaut that was originally built to perform search and rescue operations as part of the U.S. Defense Advanced Research Projects Agency's (DARPA) Robotics Challenge. But NASA's bot did not fair very well in the competition, never qualifying for the last round, which was held in June 2015. Yet the machine's makers still think there's hope for the humanoid robot.
NASA recently asked two universities, the Massachusetts Institute of Technology (MIT) and Northeastern University in Boston, to work on further development of the R5 robot. Researchers at these institutions will receive funding and support from the space agency to create software that will make the bot more useful in space. The ultimate goal of this new Space Robotics Challenge is to develop a humanoid bot that could help humans explore Mars, NASA said.
Trash collecting
The trash-hauling robots.
An artist's depiction of how the trash-hauling robots might operate.
Credit: Adrian Wirén, Mälardalens Högskola, Courtesy of Volvo Group
Sure, future robots could be more useful in space, but there also a few tasks these machines could perform to make them indispensable right here on Earth. For example, they could haul garbage. Researchers in Sweden and the United States are working on the development of such trash-chucking robots.
Spearheaded by Swedish automaker Volvo, the project is known as Robot-based Autonomous Refuse handling, or ROAR, and the goal is to develop remote-controlled bots that could be deployed from a garbage truck to the curb outside your home. The bots will lift up heavy refuse bins, empty the trash into the garbage truck and then roll along to the next house to do the same, sparing sanitation workers from any heavy lifting.
Swedish waste-management company Renova is also developing a garbage truck that could accommodate the automated system needed to control the bots and, presumably, carry the helpful machines around when they're not hauling trash. The project is expected to be ready for testing by June 2016.
Fighting fires
SAFFIR Firefighting Robot
The SAFFiR (short for Shipboard Autonomous Firefighting Robot) humanoid bot was developed to one day help put out fires aboard U.S. Navy ships.
Credit: Virginia Tech
The middle of the ocean might be the last place you'd expect to find firefighting robots, but that's precisely where the U.S. Navy would like to send these flame-quelling machines. In February 2015, the Navy unveiled its firefighting bot, SAFFiR (short for Shipboard Autonomous Firefighting Robot), which the Navay hopes to employ in the near future aboard ships at sea.
Developed by researchers at Virginia Polytechnic Institute, the humanoid bot stands nearly 6 feet (1.8 meters) tall and is equipped with thermal-imaging technologies that enable the robot to detect heat and see through smoke. It also has a laser range-finder that allows the machine to map out the distance between itself and an object. The bot can hold a fire hose, too, which means it can not only detect fires or potential sources of fires, but also put out flames should the need arise.
The bot isn't meant to replace human firefighters, but could assist them, said the researchers who developed the machine. Before the bot sees any real action, the researchers must improve its intelligence, communications capabilities, speed, computing power and battery life, they said. Considering that it took four years to get the bot ready for its first public demonstration, chances are slim that SAFFiR will be deployed in 2016. But keep an eye out for this firefighting robot in the years to come.
Running wild
Lots of bots can run; there are even superfast cheetah bots and trotting, doglike bots. But getting a two-legged, humanoid robot to move at a jog is something that researchers have struggled to do, until fairly recently. And getting a bipedal robot to run outside of a lab, over rough terrain, has proven to be an even more difficult challenge. [Robots on the Run! 5 Bots That Can Really Move]
Atlas robot.
Boston Dynamics' humanoid robot, Atlas, can now run around outdoors.
Credit: Boston Dynamics
But in August 2015, robotics company Boston Dynamics released a YouTube video showing its humanoid robot, Atlas, jogging through the woods. The robot even climbed down a steep embankment and stepped over a log. This video terrified a lot of people, but it also raised hopes about the utility of bipedal bots, which gained a reputation for being slow and clumsy after the DARPA Robotics Challenge (DRC) final last June (all of the bots fell down while on the competition course, and by the end of contest, the lot of them were in various states of repair). Atlas was one of several bots to compete in the DARPA competition.
Atlas still has a way to go before it will be ready to run through the forest at a full sprint, and before it accomplishes that goal, it will have to overcome another obstacle — its tether. The bot's movements are currently powered by a hydraulic system that is in turn powered by an electric cord that plugs into the robot's back. Before Atlas can really take off, Boston Dynamics scientists need to figure out a better way to power the bot, whose onboard lithium-ion battery pack currently lasts for only about an hour even when the bot isn't moving at full tilt. It's a design challenge the company said it will likely be working on in the new year.
Follow Elizabeth Palermo @techEpalermo. Follow Live Science @livescience, Facebook & Google+. Original article on Live Science.

Computers Plus Crowds Could Tackle World's Toughest Problems


34
7
1
Submit
0
Reddit
A person's hand hovers over a futuristic looking computer touch screen
Credit: Sergey Nivens/Shutterstock.com
The world's most dire problems, such as climate change and global conflicts, could be solved using a combination of human and computer intelligence, researchers say.
Human outperform machines at many tasks, such as recognizing images and thinking creatively. So, with the help of computers, crowds of people could collaborate in networks to achieve what neither people nor computers could do alone, a growing field known as human computation.
"What's most exciting to me about human computation is that it gives us hope today," said Pietro Michelucci, director of the Human Computation Institute in Fairfax, Virginia. Although many people have pinned both their hopes on artificial intelligence (AI), or super-intelligent machines, human computation provides an alternate view, he said.

By using today's technology to combine humans and machines, human computation could achieve sooner what AI might achieve only in the distant future, Michelucci said. And, "with the integral involvement of humans in these systems as both participants and stakeholders, we can better ensure that we remain in control," he said.
One notable example of human computation is reCAPTCHA, an online widget used by about 100 million people daily when they transcribe distorted text into a box to prove they are human in order to access online content. This act of transcribing collections of letters has helped power efforts that have digitally transcribed 13 million articles from The New York Times archives.
Most of today's human-computation systems rely on doling out small "micro tasks" to many people and then merging the results together. For instance, 165,000 volunteers in 145 countries have used the EyeWire platform to analyze thousands of images online and help build the world's most complete map of the neurons in the human retina, which is the tissue in the back of the eye that detects light and enables people to see.
However, as effective as micro tasking has proven to be, this strategy alone cannot address so-called "wicked problems" such as climate change and global conflicts, experts said. [10 Technologies That Will Transform Your Life]
A man operates a floating computer touch screen
"Wicked problems are wicked because they have many interacting parts [and] unpredictability, and because we don't understand how the different parts feed back on each other," said Janis Dickinson, professor and director of citizen science at the Cornell Lab of Ornithology in Ithaca, New York. Michelucci and Dickinson analyzed the latest research in human computation in an article published in the Jan. 1 issue of the journal Science.
And trying to solve wicked problems can have unforeseen and unwanted consequences — for instance, giving financial aid to a country after a natural disaster can lead to corruption that can actually stymie relief efforts, the researchers said.
Now scientists are envisioning ways in which human computation might tackle such complex problems.
"The key to addressing wicked problems is to create a working model, [a] computer simulation, of all of the interacting systems that pertain to a given problem," Michelucci told Live Science. "Imagine something like the game SimCity, but a thousand times more detailed. Then link in real-time sensors attached to the Internet. The more faithful the model is to the real world, the more accurate it will be for testing out solutions and predicting outcomes."
Imagine an online system that feeds this working model of the world "with knowledge from real people, where a doctor can input diagnostic methods, a mechanic can describe how a piston works, and farmers in every region of the world can provide local updates about agricultural pests," Michelucci said. "A working model of the world that pristine requires working knowledge that may be spread across the minds of thousands or millions of people, books, electronic documents and data sets."
This strategy for tackling wicked problems requires not only the constant gathering of data from the real world, but also the use of multistep reasoning. Under this method, each problem gets broken down or "decomposed" to many simpler parts that are easier to address.
New human-computation technologies might help make this a reality;  recent techniques allow contributions from people to get processed by a computer and then sent to others for improvement or analysis of a different kind, the researchers noted. [9 Odd Ways Your Tech Devices May Injure You]
For instance, YardMap.org was launched in 2012 to map global conservation efforts one parcel of land at a time, and it allows participants to interact and build on each other's work, something that crowdsourcing alone cannot achieve. Other examples of multistep reasoning were seen in the Polymath Project, which helped prove an 80-year-old mathematical theorem, and the ePluribus Problem Solver, which generated a factually accurate and well-constructed journalistic article based on just a handful of photographs. In both cases, diverse participants worked together to generate solutions.
Creating a working model of the world to handle wicked problems also requires creative thought in order to see how wicked problems might evolve in response to attempted solutions, Michelucci said.
"We can draw on human computation methods for stimulating innovation, eliciting new ideas, spreading them around and giving people the opportunity to build on each other's work," Michelucci said. "Of course, all this has to be fun, easy and quick, so that millions of people actually choose to participate."
A computer is used to create connections within a network.
"The first step might be to elicit broad solution classes from human participants, such as halting climate change or adapting to it," Michelucci said.
"Then, each of those [solution classes] might be further delegated to humans for decomposition — 100 people might receive the task of decomposing 'halt climate change' into two subclasses, such as 'biological solutions' and 'physical solutions.' Each proposal is then sent by the computer to 100 more people who evaluate it on various dimensions.
Then, each of these ideas would be sent out to 100 more people, who might break them down further or propose specific solutions, like 'paint our roofs white to reflect sunlight back into the atmosphere.'
"Ideas would then propagate through the system through various stages of vetting and modification," Michelucci said. At any stage, experts could step in to help explain complex problems in plain English.
Michelucci and Dickinson noted that human computation will need many improvements before it could tackle wicked problems. For example, in most human-computation efforts, only a small number of participants do most of the work, Michelucci and Dickinson said, adding that researchers want to find ways to maximize recruitment and contributions of participants.
"There are many questions about how people behave in human-computation systems that must be resolved before we can think really big about their use in humanitarian efforts or disasters or monitoring and addressing problems arising with chronic environmental change," Dickinson told Live Science. Moreover, Michelucci and Dickinson cautioned that researchers needed to consider what human computation may mean for the labor force, unemployment rates, and the economy, so that people who contribute to human computation projects are protected from exploitation.
But crowdsourced efforts such as Wikipedia and crowdfunding platforms such as Kickstarter highlight the massive potential that human cooperation has for solving problems, Dickinson said.
"There are huge social benefits to cooperation that have largely been overlooked — think of reputation and reciprocation or lack thereof," Dickinson said. "By providing the right kinds of information about our cooperative efforts and where we stand as cooperators, human-computation systems can provide unprecedented support for people to help work on large problems that require large-scale human effort to solve."
Follow Charles Q. Choi on Twitter @cqchoi. Follow us @livescience, Facebook Google+. Original article on Live Science.